Министерство образования Тверской области

Бюджетное Государственное образовательное учреждение среднего профессионального образования

Тверской колледж имени А.Н. Коняева

ЭЛЕМЕНТЫ МАТРИЧНОЙ АЛГЕБРЫ И ТЕОРИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Учебное пособие

Составитель: Сергиенко Н.А.

Оглавление

1. Введение в терминологию теории систем линейных уравнений	3
2. Метод Гаусса	5
3. Линейные действия над матрицами и их свойства	12
4. Произведение матриц и их свойства	15
5. Определители 2-го и 3-го порядка и их свойства	17
6. Необходимое и достаточное условие равенства определителя нулю	21
7. Минор и алгебраическое дополнение. Вычисление определителей	23
8. Формулы Крамера. Критерий единственности решения СЛУ	26
9. Обратная матрица. Критерий существования обратной матрицы	27
10. Решение СЛУ с помощью обратной матрицы	29
11. Применение методов решения систем линейных уравнений	31
12. Однородная система линейных уравнений и ее решения	32
13. Матричные уравнения вида $\mathbf{AX} = \mathbf{B}$	34
14. Примеры для самостоятельного решения	36
15. Приложение	38
Литература	39

1. Введение в терминологию теории систем линейных уравнений Определение 1

Системой линейных уравнений (СЛУ) с тремя неизвестными называется выражение вида:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

где

x, y, z - неизвестные переменные,

 a_{ij} ,(i =1,2,3, j =1,2,3) - постоянные коэффициенты при неизвестных x , y , z

 b_i ,(i=1,2,3) - свободные члены уравнений,

і - индекс, указывающий номер уравнения,

 $j\,$ - индекс, указывающий номер неизвестной в уравнении.

Определение 2

Решением СЛУ с тремя неизвестными называется упорядоченная тройка чисел (x_0 , y_0 , z_0), удовлетворяющая всем уравнениям системы.

Т.е., упорядоченный набор чисел (x_0 , y_0 , z_0) называется решением СЛУ, если он обращает в тождества все уравнения системы при подстановке в них $x = x_0$, $y = y_0$, $z = z_0$.

Пример №1. Для СЛУ

$$\begin{cases} x+4y+3z = 18\\ 2x+2y+3z = 15\\ 4x+4y+z = 15 \end{cases}$$

тройка чисел (1,2,3) является решением.

Определение 3

СЛУ называется совместной, если она имеет хотя бы одно решение; в противном случае, если решений нет, СЛУ называется несовместной.

В примере №1 показана совместная система.

СЛУ может иметь бесконечно много решений.

Пример №2. Легко проверить что, СЛУ

$$\begin{cases} x+y+z=6\\ 2x+2y+3z=15\\ x+y+2z=9 \end{cases}$$

имеет бесконечно много решений.

Действительно, бесконечно много упорядоченных троек чисел удовлетворяет ей, например: (0,3,3), (1,2,3), (2,1,3), и т.д.

Эти решения получены из общей записи решения СЛУ:

$$\begin{cases} x = t \\ y = 3 - t \\ z = 3 \\ t \in \{ -\infty, +\infty \} \end{cases}$$

Решение (0,3,3) получается из общего решения, если параметр t=0.

Решение (1,2,3) - при t=1.

Решение (2,1,3) - при t=2, и т.д.

Определение 4

Совместная СЛУ называется определенной, если она имеет единственное решение; и - неопределенной, если решений бесконечно много.

4

В примере №2 показана совместная неопределенная СЛУ.

Пример №3. Легко проверить, что для СЛУ

$$\begin{cases} x + y + z = 6 \\ 2x + 2y + 2z = 9 \\ 3x + 3y + z = 12 \end{cases}$$

не существует ни одного упорядоченного набора чисел, который удовлетворял бы всем уравнениям системы одновременно.

Действительно, умножая левую и правую части второго уравнения на $\frac{1}{2}$, получим противоречивую систему

$$\begin{cases} x + y + z = 6 \\ x + y + z = 4,5 \\ 3x + 3y + z = 12 \end{cases}$$

В данной системе первые два уравнения не могут одновременно выполняться ни при каких значениях переменных x, y, z.

В примерах №1 и №2 показаны совместные системы.

В примере №3 – система несовместна.

Определение 5

Решить СЛУ – это значит найти все ее решения, или доказать, что система решений не имеет.

2. Метод Гаусса

Пример №4. Найдем решение системы двух линейных уравнений

$$\begin{cases} x + y = 3 \\ 2x + 3y = 8 \end{cases}$$

методом последовательного исключения неизвестных.

Исключение некоторой неизвестной в СЛУ происходит при сложении двух ее уравнений, у которых при данной неизвестной коэффициенты

отличаются только знаками. Поэтому для исключения первой переменной в данной системе необходимо первое уравнение умножить на (-2).

Умножая первое уравнение на (-2), и складывая со вторым уравнением, исключаем первую переменную x во втором уравнении, и т.д.

$$\begin{cases} x+y=3\\ 2x+3y=8 \end{cases} \Rightarrow \begin{cases} -2x-2y=-6\\ 2x+3y=8 \end{cases} \Rightarrow \begin{cases} -2x-2y=-6\\ y=2 \end{cases} \Rightarrow \begin{cases} x+y=3\\ y=2 \end{cases} \Rightarrow \begin{cases} x=3-y\\ y=2 \end{cases}$$
$$\Rightarrow \begin{cases} x=1\\ y=2 \end{cases}$$

В ходе решения данной системы, выполнялись арифметические действия над уравнениями системы, которые сводились к арифметическим действиям над коэффициентами системы. При этом символы x и y, обозначающие неизвестные переменные, переносились и переписывались с новыми коэффициентами.

Поэтому, с целью сокращения записи в ходе поиска решений СЛУ, целесообразно записывать только пересчитываемые коэффициенты системы.

Определение 6

Таблица, составленная из коэффициентов СЛУ при неизвестных называется матрицей системы.

Пример №5. Матрицей рассматриваемой системы является таблица:

$$\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
 (см. пример №4).

Определение 7

Матрица системы с приписанным к ней столбцом из свободных членов называется расширенной матрицей системы.

Пример №6. Расширенная матрица данной системы имеет вид:

$$\begin{pmatrix} 1 & 1 | 3 \\ 2 & 3 | 8 \end{pmatrix}$$
 (см. пример №4).

Запишем процесс нахождения решения системы

$$\begin{cases} x+y=3\\ 2x+3y=8 \end{cases}$$

через расширенную матрицу.

Первая строка умножается на (-2), складывается со второй строкой, и результат сложения записывается на позиции второй строки.

Далее первая строка умножается на $\left(-\frac{1}{2}\right)$.

$$\begin{pmatrix} 1 & 1 | 3 \\ 2 & 3 | 8 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 & -2 | -6 \\ 2 & 3 | +8 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 & -2 | -6 \\ 0 & 1 | +2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 | +3 \\ 0 & 1 | +2 \end{pmatrix}$$

Получили, так называемую, ступенчатую матрицу

$$\begin{pmatrix} 1 & 1 & 3 \\ \hline 0 & 1 & 2 \end{pmatrix}$$

у которой под главной диагональю содержатся только нулевые элементы. (Для матриц данного размера под главной диагональю – только один элемент, который размещается во второй строке и первом столбце).

На этом процесс преобразования над строками расширенной матрицы заканчивается.

Далее записывается СЛУ, соответствующая полученной ступенчатой матрице (коэффициентами СЛУ являются элементы ступенчатой матрицы):

$$\begin{cases} x + y = 3 \\ y = 2 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}.$$

Определение 8

Элементарными преобразованиями над уравнениями системы называются следующие процедуры:

- перестановка местами двух уравнений системы;
- умножение некоторого уравнения системы на константу;
- сложение одного уравнения системы, умноженного на константу, с другим уравнением.

Определение 9

Две системы линейных уравнений называются эквивалентными, если их решения совпадают, либо они обе - несовместны.

Утверждение 1

В результате элементарных преобразований над уравнениями СЛУ получается система, эквивалентная исходной.

Определение 10

Элементарными преобразованиями над строками расширенной матрицы СЛУ называются следующие процедуры:

- перестановка местами двух строк;
- умножение некоторой строки на константу;
- сложение строки расширенной матрицы, умноженной на константу, с другой строкой.

Утверждение 2

Применение элементарных преобразований над строками расширенной матрицы СЛУ эквивалентно применению элементарных преобразований над уравнениями данной системы.

Эффективным методом решения систем линейных уравнений является метод Гаусса. В основе метода лежит принцип последовательного исключения неизвестных, путем приведения расширенной матрицы СЛУ к ступенчатому виду с помощью выполнения последовательности элементарных преобразований над ее строками.

Пример №7. Решить систему методом Гаусса

$$\begin{cases} x+4y+3z=18\\ 2x+2y+3z=15\\ 4x+4y+z=15\\ \begin{pmatrix} 1 & 4 & 3|18\\ 2 & 2 & 3|15\\ 4 & 4 & 1|15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 4 & 3|18\\ 0 & -6 & -3|-21\\ 4 & 4 & 1|15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 4 & 3|18\\ 0 & -6 & -3|-21\\ 0 & -12 & -11|-57 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 4 & 3|18\\ 0 & 2 & 1|7\\ 0 & 0 & -5|-15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 4 & 3|18\\ 0 & 2 & 1|7\\ 0 & 0 & 1|3 \end{pmatrix}$$

1 шаг. Вторая строка получена как результат сложения первой строки расширенной матрицы, умноженной на (-2), со второй строкой (при этом исключается первая неизвестная во втором уравнении);

2 шаг. Третья строка получена как результат сложения первой строки, умноженной на (-4), с третьей строкой (исключается первая неизвестная в третьем уравнении);

3 шаг. Вторая строка получена путем умножения ее на $\left(-\frac{1}{3}\right)$;

4 шаг. Третья строка получена как результат сложения второй строки, умноженной на 6, с третьей строкой (исключается вторая неизвестная в третьем уравнении);

5 шаг. Третья строка получена умножением ее на $\left(-\frac{1}{5}\right)$.

Расширенная матрица приведена к ступенчатому виду (под главной диагональю - нули). На этом процесс элементарных преобразований над строками расширенной матрицы заканчивается.

Далее записываем СЛУ, соответствующую полученной ступенчатой матрице, и являющуюся эквивалентной исходной системе.

$$\begin{cases} x+4y+3z=18\\ 2y+z=7\\ z=3 \end{cases} \Rightarrow \begin{cases} x=1\\ y=2 \text{ Ответ: } (1,2,3)-\text{решение единственное.} \\ z=3 \end{cases}$$

Так как расширенная матрица приведена к треугольному ступенчатому виду, все переменные определяются однозначно, поэтому система имеет единственное решение.

Пример №8. Решить систему методом Гаусса

$$\begin{cases} x+y+z=6\\ 2x+2y+3z=15\\ x+y+2z=9 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1|6\\ 2 & 2 & 3|15\\ 1 & 1 & 2|9 \end{pmatrix} \xrightarrow{\boxed{1}} \begin{pmatrix} 1 & 1 & 1|6\\ 0 & 0 & 1|3\\ 1 & 1 & 2|9 \end{pmatrix} \xrightarrow{\boxed{2}} \begin{pmatrix} 1 & 1 & 1|6\\ 0 & 0 & 1|3\\ 0 & 0 & 1|3 \end{pmatrix} \xrightarrow{\boxed{3}} \begin{pmatrix} 1 & 1 & 1|6\\ 0 & 0 & 1|3\\ 0 & 0 & 1|3 \end{pmatrix}$$

1 шаг. Вторая строка получена как результат сложения первой строки, умноженной на (-2), со второй строкой (исключаются первая и вторая неизвестные во втором уравнении);

2 шаг. Третья строка получена как результат сложения первой строки, умноженной на (-1), с третьей строкой (исключаются первая и вторая неизвестная в третьем уравнении);

3 шаг. Третья строка получена как результат сложения второй строки, умноженной на (-1), с третьей строкой (исключается третья строка);

Расширенная матрица приведена к ступенчатому виду (под главной диагональю - нули). На этом процесс элементарных преобразований над строками расширенной матрицы заканчивается.

Далее записываем СЛУ, соответствующую полученной ступенчатой матрице, и являющуюся эквивалентной исходной системе.

$$\begin{cases} x + y + z = 6 \\ z = 3 \end{cases} \Rightarrow \begin{cases} x + y = 3 \\ z = 3 \end{cases} \Rightarrow \begin{cases} x - \ddot{e}\ddot{a} \div \\ y = 3 - x \\ z = 3 \end{cases} \text{ Other: } \begin{cases} x = t \\ y = 3 - t, \quad t \in \P \infty, +\infty \end{cases}.$$

Расширенная матрица приведена к трапецевидному ступенчатому виду, поэтому система имеет бесконечно много решений. Каждому значению параметра t соответствует некоторое частное решение.

Например, значению параметра t=0 соответствует решение (0,3,3).

Пример №9. Решить систему методом Гаусса

$$\begin{cases} x+y+z=6\\ 2x+2y+2z=9\\ 3x+3y+z=12 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1/6\\ 2 & 2 & 2/9\\ 3 & 3 & 1/12 \end{pmatrix} \xrightarrow{\boxed{1}} \begin{pmatrix} 1 & 1 & 1/6\\ 0 & 0 & 0/-3\\ 3 & 4 & 1/12 \end{pmatrix}$$

1 шаг. Вторая строка получена как результат сложения первой строки, умноженной на (-2), со второй строкой.

Полученной второй строке расширенной матрицы соответствует противоречивое выражение:

$$0 \cdot x + 0 \cdot y + 0 \cdot z = -3$$
.

которое не выполняется ни при каких значениях неизвестных переменных, поэтому система не совместна (решений нет).

Исследование решений СЛУ с помощью метода Гаусса

- 1. Если расширенная матрица системы с помощью элементарных преобразований над строками приводится к треугольному виду, тогда система имеет единственное решение.
- 2. Если расширенная матрица системы с помощью элементарных преобразований над строками приводится к трапецевидному виду, тогда система имеет бесконечное множество решение.
- 3. Если, в ходе элементарных преобразований над строками расширенной матрицы, образуется строка вида: ($\mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{b} \ \mathbf{b} \neq 0$, тогда система решений не имеет.

3. Линейные действия над матрицами и их свойства

Определение 11

Числовой матрицей (матрицей) размера $\mathbf{h} \times \mathbf{m}$ будем называть прямоугольную таблицу чисел, содержащую \mathbf{n} строк и \mathbf{m} столбцов, и обозначать \mathbf{A} или \mathbf{A} $\mathbf{h} \times \mathbf{m}$.

Матрица **A** $\mathbf{h} \times 1^{-}$, содержащая один столбец, называется столбцом.

Матрица **A** [×**m**], содержащая одну строку, называется строкой.

Столбцы и строки будем обозначать как векторы - $\overline{\mathbf{A}}$.

Пример №10. Матрица **А** [8×3] содержит свои элементы в 3-х строках и 3-х столбцах.

Обозначение:
$$\mathbf{A}=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix}$$
 или $\mathbf{A}=|a_{\pmb{i}\pmb{j}}|,\;i=1,2,3,\;j=1,2,3$

 a_{ij} - обозначение элемента матрицы, расположенного в i -й строке, и j -м столбце, (i =1,2,3, j =1,2,3);

і - индекс, указывающий номер строки;

ј - индекс, указывающий номер столбца.

Линейными действиями над матрицами называются операции сложения матриц, и умножения матрицы на число.

Определение 12

При сложение матриц $\mathbf{A} \ \mathbf{h} \times \mathbf{m} \ \mathbf{m} \ \mathbf{b} \ \mathbf{h} \times \mathbf{m} \ \mathbf{m} \$

Обозначение суммы матриц: C = A + B

где **A**
$$\mathbf{h} \times \mathbf{m} = |a_{ij}|$$
, **B** $\mathbf{h} \times \mathbf{m} = |b_{ij}|$, **C** $\mathbf{h} \times \mathbf{m} = |c_{ij}|$, $c_{ij} = a_{ij} + b_{ij}$, $i = 1, ..., n$, $j = 1, ..., m$.

Пример №11.
$$\binom{123}{456} + \binom{876}{543} = \binom{999}{999}$$

Определение 13

При умножении матрицы $\mathbf{A} \ \mathbf{h} \times \mathbf{m}$ на $\lambda \in \mathbf{R}$ образуется матрица $\mathbf{B} \ \mathbf{h} \times \mathbf{m}$, каждый элемент которой равен произведению соответствующего элемента матрицы \mathbf{A} на λ .

Обозначение произведения матрицы на число: $\mathbf{B} = \lambda \cdot \mathbf{A}$

где **A**
$$\mathbf{h} \times \mathbf{m} = |a_{ij}|$$
, **B** $\mathbf{h} \times \mathbf{m} = |b_{ij}|$, $b_{ij} = \lambda \ a_{ij}$, $i = 1, ..., n$, $j = 1, ..., m$, $\lambda \in \mathbf{R}$.

Пример №12.
$$3 \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{pmatrix}$$

Определение 14

Линейной комбинацией столбцов $\overline{\bf A_1}$, $\overline{\bf A_2}$,..., $\overline{\bf A_n}$ с коэффициентами $k_1,k_2,...,k_n$ называется выражение вида:

$$L_n(\overline{\mathbf{A}}) = k_1 \overline{\mathbf{A}}_1 + k_2 \overline{\mathbf{A}}_2 + ... + k_n \overline{\mathbf{A}}_n$$

Пример №13. Столбец $\overline{\mathbf{A}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ является линейной комбинацией столбцов

$$\overline{\mathbf{A}}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 и $\overline{\mathbf{A}}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ с коэффициентами 1, 2.

$$\overline{\mathbf{A}}$$
 линейно выражается через $\overline{\mathbf{A}}_1$ и $\overline{\mathbf{A}}_2$: $\overline{\mathbf{A}} = \overline{\mathbf{A}}_1 + 2\overline{\mathbf{A}}_2 \iff \overline{\mathbf{A}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 2\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Аналогично вводится понятие линейной комбинации матриц $\mathbf{A_1, A_2, ..., A_n}$ с коэффициентами $k_1, k_2, ..., k_n$: $L_n(\mathbf{A}) = k_1 \mathbf{A_1} + k_2 \mathbf{A_2} + ... + k_n \mathbf{A_n}$.

Линейные свойства матриц:

Пусть

A
$$[a_{ij}|, B \ [a_{ij}|, i=1,...,n, j=1,...,m, \lambda \in \mathbb{R}, \mu \in \mathbb{R}, \mu \in \mathbb{R}]$$

тогда:

$$1.A + B = B + A$$
 (коммутативность)

$$2.(A + B) + C = A + (B + C)$$
 (ассоциативность)

3.
$$\lambda$$
 (**A** + **B**) = λ **A** + λ **B** (дистрибутивность)

$$4.(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$$
 (дистрибутивность)

5.
$$(\lambda \mu)$$
A= $\lambda (\mu \mathbf{A})$ (ассоциативность)

4. Произведение матриц и их свойства

Определение 15

Произведением матриц **A** $\mathbf{h} \times \mathbf{m}$ и **B** $\mathbf{m} \times \mathbf{k}$ называется матрица **C** $\mathbf{h} \times \mathbf{k}$, элементы которой определяются по формуле:

$$c_{ij} = \sum_{q=1}^{m} a_{iq} b_{qj}$$
, ($i=1,...,n$, $j=1,...,k$).

Обозначение : $\mathbf{C} = \mathbf{A}\mathbf{B}$, $\mathbf{C} \left[\mathbf{h} \times \mathbf{k} \right] = |c_{ij}|$.

Пример №14. Пусть **A** $\mathbf{h} \times \mathbf{m}$, **B** $\mathbf{m} \times \mathbf{k}$. Найти $\mathbf{C} = \mathbf{AB}$.

$$c_{11} = \sum_{q=1}^{m} a_{1q} b_{q1} = a_{11} b_{11} + a_{12} b_{21} + \ldots + a_{1m} b_{m1},$$

$$c_{12} = \sum_{q=1}^{m} a_{1q} b_{q2} = a_{11} b_{12} + a_{12} b_{22} + \ldots + a_{1m} b_{m2},$$

$$c_{13} = \sum_{q=1}^m a_{1q} b_{q3} = a_{11} \, b_{13} + a_{12} \, b_{23} + \ldots + a_{1m} \, b_{m3}, \;\;$$
и т.д.

Матрицы \mathbf{A} и \mathbf{B} можно перемножить, если число столбцов матрицы \mathbf{A} (т.е. длина строки матрицы \mathbf{A}) равно числу строк матрицы \mathbf{B} (т.е. длине столбца матрицы \mathbf{B}).

Количество строк матрицы ${\bf C}$ (где ${\bf C}={\bf A}{\bf B}$) определяется количеством строк матрицы ${\bf A}$, а количество столбцов – количеством столбцов матрицы ${\bf B}$.

Пример №15.
$$\begin{pmatrix} 3 & 1 & 0 & 2 \\ 6 & 2 & 0 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 7 \\ 0 & 3 & 0 \\ 1 & 7 & 9 \\ 3 & 0 & -6 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix} = \begin{pmatrix} 9 & 9 & 9 \\ 18 & 18 & 18 \end{pmatrix}$$

$$c_{11} = 3 \times 1 + 1 \times 0 + 0 \times 1 + 2 \times 3 = 9$$
 $c_{21} = 6 \times 1 + 2 \times 0 + 0 \times 1 + 4 \times 3 = 18$

$$c_{12} = 3 \times 2 + 1 \times 3 + 0 \times 7 + 2 \times 0 = 9 \qquad c_{22} = 6 \times 2 + 2 \times 3 + 0 \times 7 + 4 \times 0 = 18$$

$$c_{13} = 3 \times 7 + 1 \times 0 + 0 \times 9 - 2 \times 6 = 9$$
 $c_{23} = 6 \times 7 + 2 \times 0 + 0 \times 9 - 4 \times 6 = 18$

Свойства произведения матриц:

- 1. $\mathbf{ABC} = \mathbf{ABC}$ (ассоциативность)
- 2. $\mathbf{A} + \mathbf{B} \mathbf{C} = \mathbf{AC} + \mathbf{BC}$ (дистрибутивность)

В общем случае произведение матриц не коммутативно, т.е. $AB \neq BA$. Если AB = BA, тогда матрицы A и B называются перестановочными.

Пример №16. Умножим матрицу
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 на столбец $\overline{\mathbf{X}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{11}x + a_{12}y + a_{23}z \\ a_{21}x + a_{22}y + a_{23}z \\ a_{31}x + a_{32}y + a_{33}z \end{pmatrix} \implies$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \iff \begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

Матричной записью системы линейных уравнений

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

называется выражение вида: $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix},$ или кратко: $\mathbf{A}\overline{\mathbf{X}} = \overline{\mathbf{B}}$,

где:

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 - матрица системы;

$$\overline{f X} = egin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 - столбец неизвестных; $\overline{f B} = egin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ - столбец свободных членов.

5. Определители 2-го и 3-го порядка и их свойства

Определение 16

Выражение вида

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
, где $a_{ij} \in \mathbf{R}$, $i = 1, 2, j = 1, 2,$

которое вычисляется по формуле

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21},$$

называется определителем второго порядка матрицы $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Пример №17. Вычислить определитель: $\begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 1 = 5$.

Определение 17

Выражение вида

которое вычисляется по формуле

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{22} a_{31} - a_{12} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{22} a_{22} - a_{22} a_{22} a_{22}$$

$$a_{11} a_{23} a_{32}$$

называется определителем третьего порядка матрицы $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$

В алгебраическую сумму, определяющую определитель третьего порядка, со знаком плюс входят произведения следующих элементов:

со знаком минус:

$$\begin{bmatrix} a & a & a \\ 11 & & & & 13 \\ a & & & & & 22 & & 23 \\ a & & & & & & & & 33 \\ a & & & & & & & & & & 33 \end{bmatrix}.$$

 $\det \mathbf{A}$ - обозначение определителя (детерминанта) матрицы \mathbf{A} .

Свойства определителей разберем на примере определителей 2-го и 3-го порядка.

1. Определитель матрицы не изменяется при ее транспонировании

$$\det \mathbf{A} = \det \mathbf{A}^T$$
, где $\mathbf{A} = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}$, $\mathbf{A}^T = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$

 \mathbf{A}^T - обозначение транспонированной матрицы \mathbf{A} .

Транспонирование – это процедура, связанная с заменой строк матрицы на столбцы

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

18

Из первого свойства следует, что любое свойство, сформулированное для строк определителя, справедливо и для столбцов, и - наоборот.

2. Знак определителя изменится на противоположный, если поменять местами два столбца (строки)

$$\begin{vmatrix} a_2 & a_1 \\ b_2 & b_1 \end{vmatrix} = a_2 b_1 - a_1 b_2 = -(a_1 b_2 - a_2 b_1) = -\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

3. Определитель равен нулю, если содержит нулевой столбец (строку)

$$\begin{vmatrix} a_1 & 0 \\ b_1 & 0 \end{vmatrix} = 0$$

4. Определитель равен нулю, если содержит два одинаковые столбца (строки)

$$\begin{vmatrix} a_1 & a_1 \\ b_1 & b_1 \end{vmatrix} = a_1 b_1 - a_1 b_1 = 0$$

5. Кооэффициент, на который умножены все элементы некоторого столбца (строки) можно выносить за определитель, как множитель.

$$\begin{vmatrix} a_1 & ka_2 \\ b_1 & kb_2 \end{vmatrix} = k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & ka_2 \\ b_1 & kb_2 \end{vmatrix} = ka_1b_2 - ka_2b_1 = k(a_1b_2 - a_2b_1) = k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

$$\begin{vmatrix} k_1a_1 & k_2a_2 \\ k_1b_1 & k_2b_2 \end{vmatrix} = k_1k_2 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

Пример №18.
$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 6 & 3 & 9 \end{vmatrix} = 3 \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix}$$

6. Определитель равен нулю, если содержит пропорциональные столбцы (строки)

$$\begin{vmatrix} a_1 & ka_1 \\ b_1 & kb_1 \end{vmatrix} = 0 \iff \begin{vmatrix} a_1 & ka_1 \\ b_1 & kb_1 \end{vmatrix} = k \begin{vmatrix} a_1 & a_1 \\ b_1 & b_1 \end{vmatrix} = 0 \quad (\text{см. свойство 4})$$

7. Если в определителе каждый элемент некоторого i-го столбца представлен суммой двух слагаемых, тогда данный определитель может быть представлен суммой двух определителей того же порядка.

Столбцы полученных определителей, кроме і-го столбца, совпадают со столбцами исходного определителя.

і-й столбец первого полученного определителя состоит соответственно из первых слагаемых в суммах, которыми представлены соответствующие элементы і-го столбца исходного определителя.

і-й столбец второго полученного определителя состоит соответственно из вторых слагаемых в суммах, которыми представлены соответствующие элементы і-го столбца исходного определителя.

$$\begin{vmatrix} a_1 & a_2 & (a_3 + a_4) \\ b_1 & b_2 & (b_3 + b_4) \\ c_1 & c_2 & (c_3 + c_4) \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & a_4 \\ b_1 & b_2 & b_4 \\ c_1 & c_2 & c_4 \end{vmatrix}$$

В силу свойства 1, данное свойство справедливо и для строк.

Утверждение 3

Определитель не изменится, если к одному из его столбцов прибавить другой его столбец, умноженный на константу (см.свойства 7,6).

В силу свойства 1, данное утверждение справедливо и для строк.

8. Определитель равен нулю, если один из его столбцов (строк) представляет собой линейную комбинацию некоторых других столбцов (строк).

Рассмотрим определитель

$$\begin{vmatrix} a_1 & a_2 & (k_1 a_1 + k_2 a_2) \\ b_1 & b_2 & (k_1 b_1 + k_2 b_2) \\ c_1 & c_2 & (k_1 c_1 + k_2 c_2) \end{vmatrix};$$

у которого третий столбец представляет собой линейную комбинацию первого и второго столбцов с коэффициентами k_1 и k_2 :

$$\begin{vmatrix} k_1a_1 + k_2a_2 \\ k_1b_1 + k_2b_2 \\ k_1c_1 + k_2c_2 \end{vmatrix} = k_1 \begin{vmatrix} a_1 \\ b_1 \\ c_1 \end{vmatrix} + k_2 \begin{vmatrix} a_2 \\ b_2 \\ c_2 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & a_2 & (k_1a_1 + k_2a_2) \\ b_1 & b_2 & (k_1b_1 + k_2b_2) \\ c_1 & c_2 & (k_1c_1 + k_2c_2) \end{vmatrix} = 0 \Leftrightarrow$$

$$\begin{vmatrix} a_1 & a_2 & (k_1a_1 + k_2a_2) \\ b_1 & b_2 & (k_1b_1 + k_2b_2) \\ b_1 & b_2 & (k_1b_1 + k_2b_2) \\ c_1 & c_2 & (k_1c_1 + k_2c_2) \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & k_1a_1 \\ b_1 & b_2 & k_1b_1 \\ c_1 & c_2 & k_1c_1 \end{vmatrix} + \begin{vmatrix} a_1 & a_2 & k_2a_2 \\ b_1 & b_2 & k_2b_2 \\ c_1 & c_2 & k_2c_2 \end{vmatrix} = 0 + 0$$

$$(см.свойства 7,6)$$

6. Необходимое и достаточное условие равенства определителя нулю Определение 18

Система столбцов называется линейно зависимой, если один из столбцов может быть представлен в виде линейной комбинации других столбцов.

Пример №19. Система столбцов

$$\overline{\mathbf{A}}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \overline{\mathbf{A}}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ \overline{\mathbf{A}}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

линейно зависима т.к. столбец $\overline{\mathbf{A}}_3$ линейно выражается через столбцы $\overline{\mathbf{A}}_1$, $\overline{\mathbf{A}}_2$:

$$\overline{\mathbf{A}}_{3} = \overline{\mathbf{A}}_{1} + 2\overline{\mathbf{A}}_{2} \iff \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Утверждение 4. (Необходимое и достаточное условие равенства определителя нулю).

Для равенства определителя нулю необходимо и достаточно, чтобы его столбцы (строки) были линейно зависимыми.

Пример №20

$$\begin{vmatrix} a_1 & a_2 & (k_1 a_1 + k_2 a_2) \\ b_1 & b_2 & (k_1 b_1 + k_2 b_2) \\ c_1 & c_2 & (k_1 c_1 + k_2 c_2) \end{vmatrix} = 0$$

Третий столбец данного определителя представляет линейную комбинацию первого и второго столбцов с коэффициентами k_1 и k_2 . Поэтому столбцы данного определителя линейно зависимы (выполнено необходимое и достаточное условие равенства определителя нулю).

Пример №21. Исследование системы столбцов

$$\overline{\mathbf{A}}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \ \overline{\mathbf{A}}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \ \overline{\mathbf{A}}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

на линейную зависимость с помощью определителя

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 3 \end{vmatrix} = 1 \times 2 \times 3 + 0 \times 2 \times 2 + 1 \times 0 \times 1 - 1 \times 2 \times 2 - 0 \times 0 \times 3 - 1 \times 2 \times 1 = 0$$

Определитель равен нулю, следовательно – столбцы линейно зависимы.

7. Минор и алгебраическое дополнение. Вычисление определителей Определение 19

Минором M_{ij} элемента a_{ij} определителя

$$\begin{bmatrix} a & a & a \\ 11 & 12 & 13 \\ a & a & a \\ 21 & 22 & 23 \\ a & a & a \\ 31 & 32 & 33 \end{bmatrix}$$

называется определитель, который получается из исходного путем вычеркивания і-й строки и ј-го столбца, на пересечении которых данный элемент расположен.

Пример №22. Минор элемента a_{12} :

$$M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21}a_{33} - a_{23}a_{31}$$

Определение 20

Алгебраическим дополнением A_{ij} элемента a_{ij} определителя называется выражение вида: $A_{ij} = (-1)^{i+j} \cdot M_{ij}$, где M_{ij} минор элемента a_{ij} .

Пример №23. Алгебраическое дополнение элемента a_{12} :

$$A_{12} = (-1)^{1+2} \cdot M_{12} = -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = -(a_{21}a_{33} - a_{23}a_{31})$$

Утверждение 5. (Вычисление определителя)

Вычисление определителя может осуществляться путем разложения его по любой строке (столбцу) следующим образом,

по строке:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{i1} A_{i1} + a_{i2} A_{i2} + a_{i3} A_{i3}, (i=1,2,3);$$

по столбцу:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{1j} \, A_{1j} + a_{2j} \, A_{2j} + a_{3j} \, A_{3j} \, , \, (j=1,2,3).$$

Пример №24. Разложение определителя по первой строке

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13};$$

$$A_{11} = (-1)^{1+1} \cdot M_{11} = + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix};$$

$$A_{12} = (-1)^{1+2} \cdot M_{12} = -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix};$$

$$A_{13} = (-1)^{1+3} \cdot M_{13} = + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix};$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Пример №25. Вычисление определителя путем разложения по первой строке

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 3 \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} - 4 \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} + 5 \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} = 3 \times 5 + 4 \times 2 - 5 \times 4 = 3;$$

Аналогично данный определитель можно разложить по любой другой строке (столбцу).

Пример №26. Определитель ступенчатой матрицы

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ 0 & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} 0 & a_{23} \\ 0 & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} 0 & a_{22} \\ 0 & 0 \end{vmatrix} = a_{11} a_{22} a_{33}.$$

Утверждение 6

Определитель ступенчатой матрицы равен произведению ее диагональных элементов.

Пример №27. Вычисление определителя путем приведения его к ступенчатому виду

В силу свойства №5, имеем:

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = -\frac{1}{2} \begin{vmatrix} -6 & -8 & -10 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = -\frac{1}{2} \cdot \frac{1}{3} \cdot \begin{vmatrix} -6 & -8 & -10 \\ 0 & 2 & 1 \\ 6 & 3 & 9 \end{vmatrix};$$

Определитель не изменится, если к одной из его строк прибавить другую строку, умноженную на константу (см. утверждение 3), поэтому:

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = -\frac{1}{6} \cdot \begin{vmatrix} -6 & -8 & -10 \\ 0 & 2 & 1 \\ 6 & 3 & 9 \end{vmatrix} = -\frac{1}{6} \cdot \begin{vmatrix} -6 & -8 & -10 \\ 0 & 2 & 1 \\ 0 & -5 & -1 \end{vmatrix} = -\frac{1}{6} \cdot 4 \cdot 2 \begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 0 & -5 & -1 \end{vmatrix};$$

$$\begin{vmatrix} 3 & 4 & 5 \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} 3 & 4 & 5 \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} 3 & 4 & 5 \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} 3 & 4 & 5 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = \frac{1}{3} \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 0 & -5 & -1 \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{5} \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 10 & 5 \\ 0 & -5 & -1 \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{5} \cdot \frac{1}{2} \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 10 & 5 \\ 0 & -10 & -2 \end{vmatrix};$$

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = \frac{1}{30} \begin{vmatrix} 3 & 4 & 5 \\ 0 & 10 & 5 \\ 0 & -10 & -2 \end{vmatrix} = \frac{1}{30} \begin{vmatrix} 3 & 4 & 5 \\ 0 & 10 & 5 \\ 0 & 0 & 3 \end{vmatrix} = \frac{1}{30} \cdot 5 \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix};$$

$$\begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = \frac{1}{6} \cdot \begin{vmatrix} 3 & 4 & 5 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{vmatrix} = \frac{1}{6} \cdot 3 \cdot 2 \cdot 3 = 3;$$

8. Формулы Крамера (рассматривается случай $\Delta \neq 0$)

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$
 (СЛУ)

$$\Delta = egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{array}$$
 - определитель системы

Если определитель СЛУ отличен от нуля, тогда решение системы определяется однозначно по формулам Крамера:

$$x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta}, \quad z = \frac{\Delta_z}{\Delta} \quad (\Delta \neq 0)$$
где: $\Delta_x = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b & a & a \end{vmatrix}, \quad \Delta_y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a & b & a \end{vmatrix}, \quad \Delta_z = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a & a & b \end{vmatrix}$

Пример №28. Решить СЛУ с помощью формул Крамера

$$\begin{cases} x+4y+3z=18\\ 2x+2y+3z=15\\ 4x+4y+z=15 \end{cases}$$

Определитель системы отличен от нуля, следовательно - решение однозначно определяется по формулам Крамера:

$$\Delta_{x} = \begin{vmatrix} 18 & 4 & 3 \\ 15 & 2 & 3 \\ 15 & 4 & 1 \end{vmatrix} = 18 \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} - 4 \begin{vmatrix} 15 & 3 \\ 15 & 1 \end{vmatrix} + 3 \begin{vmatrix} 15 & 2 \\ 15 & 4 \end{vmatrix} = 30, \quad x = \frac{\Delta_{x}}{\Delta} = \frac{30}{30} = 1;$$

$$\Delta_{y} = \begin{vmatrix} 1 & 18 & 3 \\ 2 & 15 & 3 \\ 4 & 15 & 1 \end{vmatrix} = \begin{vmatrix} 15 & 3 \\ 15 & 1 \end{vmatrix} - 18 \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 15 \\ 4 & 15 \end{vmatrix} = 60, \quad y = \frac{\Delta_{y}}{\Delta} = \frac{60}{30} = 2;$$

$$\Delta_z = \begin{vmatrix} 1 & 4 & 18 \\ 2 & 2 & 15 \\ 4 & 4 & 15 \end{vmatrix} = \begin{vmatrix} 2 & 15 \\ 4 & 15 \end{vmatrix} - 4 \begin{vmatrix} 2 & 15 \\ 4 & 15 \end{vmatrix} + 18 \begin{vmatrix} 2 & 2 \\ 4 & 4 \end{vmatrix} = 90, \quad z = \frac{\Delta_z}{\Delta} = \frac{90}{30} = 3.$$

Утверждение 7. (Критерий единственности решения СЛУ).

Для того, чтобы система имела единственное решение, необходимо и достаточно, чтобы определитель системы был отличен от нуля.

9. Обратная матрица

Определение 21

Матрица ${\bf A}^{-1}$ называется обратной матрице ${\bf A}$, если

$$\mathbf{A}^{-1} \times \mathbf{A} = \mathbf{A} \times \mathbf{A}^{-1} = \mathbf{E}$$

где
$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 - единичная матрица.

Единичная матрица в матричной алгебре играет роль единицы:

$$\mathbf{A} \times \mathbf{E} = \mathbf{E} \times \mathbf{A} = \mathbf{A}$$
, где \mathbf{A} – квадратная матрица.

Вычисление обратной матрицы

$$\mathbf{A}^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

где
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 - определитель матрицы ${\bf A}$

 A_{ij} - алгебраические дополнения элементов a_{ij}

Пример №29. Вычислить матрицу A^{-1} , обратную матрице A

$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 2 \\ 4 & 4 \end{vmatrix} = 30;$$

$$A_{11} = (-1)^{1+1} \cdot M_{11} = + \begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} = -10; \quad A_{21} = (-1)^{2+1} \cdot M_{21} = - \begin{vmatrix} 4 & 3 \\ 4 & 1 \end{vmatrix} = 8;$$

$$A_{12} = (-1)^{1+2} \cdot M_{12} = -\begin{vmatrix} 2 & 3 \\ 4 & 1 \end{vmatrix} = 10; \quad A_{22} = (-1)^{2+2} \cdot M_{22} = +\begin{vmatrix} 1 & 3 \\ 4 & 1 \end{vmatrix} = -11;$$

$$A_{13} = (-1)^{1+3} \cdot M_{13} = + \begin{vmatrix} 2 & 2 \\ 4 & 4 \end{vmatrix} = 0; \quad A_{23} = (-1)^{2+3} \cdot M_{23} = - \begin{vmatrix} 1 & 4 \\ 4 & 4 \end{vmatrix} = 12;$$

$$A_{31} = (-1)^{3+1} \cdot M_{31} = + \begin{vmatrix} 4 & 3 \\ 2 & 3 \end{vmatrix} = 6;$$

$$A_{32} = (-1)^{3+2} \cdot M_{32} = -\begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = 3;$$
 $A_{33} = (-1)^{3+3} \cdot M_{33} = +\begin{vmatrix} 1 & 4 \\ 2 & 2 \end{vmatrix} = -6;$

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \frac{1}{30} \begin{pmatrix} -10 & 8 & 6 \\ 10 & -11 & 3 \\ 0 & 12 & -6 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$

Проверка
$$\mathbf{A} \times \mathbf{A}^{-1} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix} \times \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Утверждение 8. (Критерий существования обратной матрицы)

Для существования \mathbf{A}^{-1} необходимо и достаточно, чтобы $\det \mathbf{A} \neq 0$.

10. Решение СЛУ с помощью обратной матрицы

СЛУ

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

может быть представлена в виде $\mathbf{A}\overline{\mathbf{X}} = \overline{\mathbf{B}}$ (см. пример №16)

где

А-матрица системы

 $\overline{\mathbf{X}}$ – столбец неизвестных

 $\overline{\mathbf{B}}$ – столбец свободных членов.

$$\mathbf{A}\overline{\mathbf{X}} = \overline{\mathbf{B}} \iff \mathbf{A}^{-1} \mathbf{A}\overline{\mathbf{X}} = \mathbf{A}^{-1} \overline{\mathbf{B}} \iff \mathbf{E} \overline{\mathbf{X}} = \mathbf{A}^{-1} \overline{\mathbf{B}} \iff \overline{\mathbf{X}} = \mathbf{A}^{-1} \overline{\mathbf{B}} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Пример №30. Решить СЛУ с помощью обратной матрицы

$$\begin{cases} x+4y+3z = 18\\ 2x+2y+3z = 15\\ 4x+4y+z = 15 \end{cases}$$

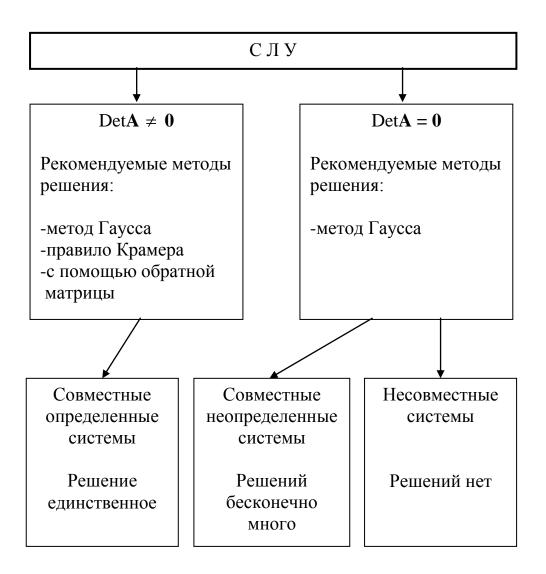
Матричный вид системы:

$$\begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 18 \\ 15 \\ 15 \end{pmatrix} \Leftrightarrow \mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 18 \\ 15 \\ 15 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 18 \\ 15 \\ 15 \end{pmatrix}$$

где
$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}, \ \overline{\mathbf{X}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \overline{\mathbf{B}} = \begin{pmatrix} 18 \\ 15 \\ 15 \end{pmatrix}, \ \mathbf{A}^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$
 (см. пример №29)

тогда
$$\overline{\mathbf{X}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \overline{\mathbf{B}} = \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \times \begin{pmatrix} 18 \\ 15 \\ 15 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
. Ответ: (1,2,3).

11. Применение методов решения систем линейных уравнений



Замечания:

1). Если Δ =0, Δ_x ≠0 или Δ_y ≠0 или Δ_z ≠0, тогда — решений нет, так как формулы Крамера приводят к противоречивым выражениям, которые не выполняются ни при каких значениях неизвестных:

$$\Delta_x = \Delta \cdot x = 0, \quad \Delta_y = \Delta \cdot y = 0, \quad \Delta_z = \Delta \cdot z = 0.$$

2). Если $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$, тогда — имеет место неопределенность, т.е. система может иметь бесконечно много решений, или быть несовместной.

12. Однородная система линейных уравнений и ее решения Определение 22

Система линейных уравнений

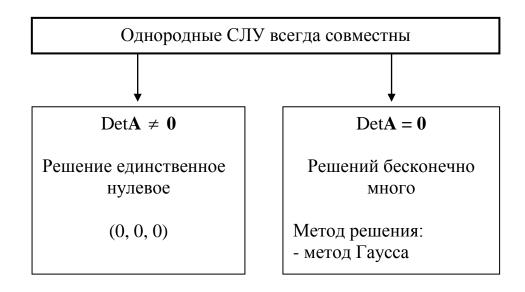
$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0 \\ a_{21}x + a_{22}y + a_{23}z = 0 \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

у которой столбец свободных членов - нулевой, называется однородной. Однородная СЛУ (ОСЛУ) всегда совместна, так как нулевое решение (0,0,0) ей всегда удовлетворяет.

Поэтому, если однородная СЛУ имеет единственное решение, тогда оно - нулевое, так как для данного вида систем нулевое решение всегда имеет место.

Однородная СЛУ имеет ненулевые решения, если решений бесконечно много.

Утверждение 9. (Критерий существования ненулевых решений ОСЛУ). Для того, чтобы однородная СЛУ имела ненулевые решения, необходимо и достаточно, чтобы определитель системы был равен нулю.



Пример №31. Решить однородную СЛУ

$$\begin{cases} x+4y+3z &= 0\\ 2x+2y+3z &= 0\\ 4x+4y+z &= 0 \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{vmatrix} = 30$$

Определитель однородной системы отличен от нуля, следовательно решение единственное – нулевое.

Ответ: (0,0,0).

Пример №32. Решить однородную СЛУ

$$\begin{cases} x+y+z &= 0\\ 2x+2y+3z &= 0\\ x+y+2z &= 0 \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} = 0$$

Определитель однородной системы равен нулю, следовательно - решений бесконечно много.

Общее решение ищем с помощью метода Гаусса

$$\begin{pmatrix} 1 & 1 & 1 | 0 \\ 2 & 2 & 3 | 0 \\ 1 & 1 & 2 | 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 | 0 \\ 0 & 0 & 1 | 0 \\ 1 & 1 & 2 | 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 | 0 \\ 0 & 0 & 1 | 0 \\ 0 & 0 & 1 | 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 | 0 \\ 0 & 0 & 1 | 0 \\ 0 & 0 & 0 \end{pmatrix}$$

33

Далее записываем систему, соответствующую полученной ступенчатой матрице, и являющуюся эквивалентной исходной.

$$\begin{cases} x+y+z &= 0 \\ z &= 0 \end{cases} \implies \begin{cases} x+y &= 0 \\ z &= 0 \end{cases} \implies \begin{cases} x-\ddot{e}\ddot{a} \div \\ y=-x \\ z=0 \end{cases} \begin{cases} x=t \\ y=-t \\ z=0 \end{cases}$$

13. Матричные уравнения вида АХ = В

Определение 23

Матричным уравнением называется выражение вида

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \times \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$

или в краткой записи: AX = B,

где:
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 $\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$ $\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$

A, B-заданные матрицы, $\det A \neq 0$,

 \mathbf{X} – неизвестная матрица, которую надо найти.

Под решением матричного уравнения будем понимать матрицу ${\bf X}$, которая обращает матричное уравнение в тождество.

Искать решение матричного уравнения будем с помощью обратной матрицы

$$\mathbf{A}\mathbf{X} = \mathbf{B} \Leftrightarrow \mathbf{A}^{-1} \mathbf{A}\mathbf{X} = \mathbf{A}^{-1} \mathbf{B} \Leftrightarrow \mathbf{E}\mathbf{X} = \mathbf{A}^{-1} \mathbf{B} \Leftrightarrow \mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$$

Пример №33. Решить матричное уравнение

$$\begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 8 & 9 \\ 2 & 4 & 9 \\ 4 & 8 & 3 \end{pmatrix}$$

Искать решение будем по формуле: $\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$

где:
$$\mathbf{A} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}$$
 $\mathbf{B} = \begin{pmatrix} 1 & 8 & 9 \\ 2 & 4 & 9 \\ 4 & 8 & 3 \end{pmatrix}$ $\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}^{-1} \times \begin{pmatrix} 1 & 8 & 9 \\ 2 & 4 & 9 \\ 4 & 8 & 3 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 3 \\ 4 & 4 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix}$$
(см. пример №29)

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & \frac{4}{15} & \frac{1}{5} \\ \frac{1}{3} & -\frac{11}{30} & \frac{1}{10} \\ 0 & \frac{2}{5} & -\frac{1}{5} \end{pmatrix} \times \begin{pmatrix} 1 & 8 & 9 \\ 2 & 4 & 9 \\ 4 & 8 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Otbet:
$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

14. Примеры для самостоятельного решения

14.1. Решить системы линейных уравнений

1)
$$\begin{cases} 2x + y = 4 \\ x + 2y = 5 \end{cases}$$
; 2)
$$\begin{cases} 3x + y = 7 \\ 5x + 2y = 12 \end{cases}$$
; 3)
$$\begin{cases} 2x + y - z = 1 \\ 3x + y - z = 2 \\ x + z = 4 \end{cases}$$

5)
$$x-2y+3z=0$$
; OTBET:
$$\begin{cases} x = 2t_1 - 3t_2 \\ y = t_1 \\ z = t_2 \\ t_1, t_2 \in \P \infty, \infty \end{cases}$$

6)
$$\begin{cases} x + 2y + 3z = 0 \\ 4x + 3y + 2z = 0 \end{cases}$$
; OTBET:
$$\begin{cases} x = t \\ y = -2t \\ z = t \\ t \in \mathbf{C}, \infty \end{cases}$$

7)
$$\begin{cases} 4x - 7y + 3z = 0 \\ 2x - 5y + 3z = 0 \end{cases}$$
 OTBET:
$$\begin{cases} x = t \\ y = t \\ z = t \\ t \in \P \infty, \infty \end{cases}$$

8)
$$\begin{cases} x+2y+3z = 0 \\ 2x+3y+4z = 0; \\ 3x+4y+5z = 0 \end{cases}$$
 OTBET:
$$\begin{cases} x=t \\ y=-2t \\ z=t \\ t \in \P \infty, \infty \end{cases}$$

9)
$$\begin{cases} x+2y+3z = 0 \\ 2x+3y+4z = 0; \\ 3x+4y+5z = 3 \end{cases}$$
 Ответ: Решений нет

10)
$$2x+3y=4$$
; OTBET:
$$\begin{cases} x=2-3t \\ y=2t \\ t \in \P \infty, \infty \end{cases}$$

11)
$$\begin{cases} x + 2y + 3z = 6 \\ 2x + z = 3 \end{cases}$$
 OTBET:
$$\begin{cases} x = \frac{3}{2} - 2t \\ y = \frac{9}{4} - 5t \\ z = 4t \\ t \in \mathbf{C}, \infty \end{cases}$$

12)
$$\begin{cases} x+2y+3z & =1\\ 2x+3y+4z & =2;\\ 3x+4y+5z & =3 \end{cases}$$
 OTBET:
$$\begin{cases} x=t+1\\ y=-2t\\ z=t\\ t\in \P\infty, \infty \end{cases}$$

14.2. Проверить с помощью определителя линейную зависимость следующих систем столбцов

1)
$$\overline{\mathbf{A}}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\overline{\mathbf{A}}_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\overline{\mathbf{A}}_3 = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$

2)
$$\overline{\mathbf{A}}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\overline{\mathbf{A}}_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\overline{\mathbf{A}}_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$

14.3. Решить матричное уравнение

$$\begin{pmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix}$$

15. Приложение

15.1. Вывод формул Крамера для СЛУ с тремя переменными

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases} \Leftrightarrow \begin{cases} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{cases} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Пусть
$$\Delta = \det \mathbf{A} \neq 0$$
, где: $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, тогда

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \Rightarrow \begin{aligned} x &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{11} b_1 + A_{21} b_2 + A_{31} b_3 \\ b_2 \\ b_3 \end{pmatrix} \Rightarrow \begin{aligned} y &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{11} b_1 + A_{21} b_2 + A_{31} b_3 \\ b_2 \\ b_3 \end{vmatrix} \Rightarrow \end{aligned}$$

$$z = \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{12} b_1 + A_{22} b_2 + A_{32} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 + A_{33} b_3 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 \\ z &= \frac{1}{\Delta} \begin{pmatrix} \mathbf{A}_{13} b_1 + A_{23} b_2 \\ z &= \frac{1}{\Delta}$$

$$A_{11} = + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}; \quad A_{21} = - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}; \quad A_{31} = + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$A_{12} = -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}; \quad A_{22} = + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}; \quad A_{32} = - \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

$$A_{13} = + \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}; \quad A_{23} = - \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}; \quad A_{33} = + \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$A_{11}b_{1} + A_{21}b_{2} + A_{31}b_{3} = b_{1}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - b_{2}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + b_{3}\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = \begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}$$

$$A_{12}b_1 + A_{22}b_2 + A_{32}b_3 = -b_1\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + b_2\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} - b_3\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = \begin{vmatrix} a_{11} & b_{13} & a_{13} \\ a_{11} & b_{23} & a_{23} \\ a_{31} & b_{33} & a_{33} \end{vmatrix}$$

$$A_{13}b_1 + A_{23}b_2 + A_{33}b_3 = b_1\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} - b_2\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + b_3\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & b_{13} \\ a_{21} & a_{22} & b_{23} \\ a_{31} & a_{32} & b_{33} \end{vmatrix}$$

$$x = \frac{1}{\Delta} \left(\mathbf{A}_{12} b_1 + A_{22} b_2 + A_{32} b_3 \right) = \frac{1}{\Delta} \begin{vmatrix} b_1 & a_1 & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix} = \frac{\Delta_x}{\Delta}, \text{ где: } \Delta_x = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$y = \frac{1}{\Delta} \ \mbox{$ \P_{12}$} b_1 + A_{22} b_2 + A_{32} b_3 \ \ \, = \frac{1}{\Delta} \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{22} & b_2 & a_{23} \\ a_{23} & b_2 & a_{23} \\ a_{23} & b_3 & a_{23} \ \ \, = \frac{\Delta y}{\Delta} \, , \ \, \text{гдe: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гдe: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta} \, , \ \, \text{гge: } \Delta y = \frac{\Delta y}{\Delta}$$

$$y = \frac{1}{\Delta} \mathbf{A}_{12}b_1 + A_{22}b_2 + A_{32}b_3 = \frac{1}{\Delta} \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix} = \frac{\Delta y}{\Delta}, \text{ где: } \Delta y = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$z = \frac{1}{\Delta} \mathbf{A}_{13}b_1 + A_{23}b_2 + A_{33}b_3 = \frac{1}{\Delta} \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix} = \frac{\Delta z}{\Delta}, \text{ где: } \Delta z = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}$$

Литература

- 1. Д.В. Беклемишев. "Курс аналитической геометрии и линейной алгебры", М., Наука, 2008.
- 2. Л.А. Беклемишева, А.Ю. Петрович, И.А. Чубаров. "Сборник задач по аналитической геометрии и линейной алгебре", М., Наука, 2007.